Visual Saliency Detection for RGB-D Images with Generative Model

نویسندگان

  • Song-Tao Wang
  • Zhen Zhou
  • Han-Bing Qu
  • Bin Li
چکیده

In this paper, we propose a saliency detection model for RGB-D images based on the contrasting features of colour and depth with a generative mixture model. The depth feature map is extracted based on superpixel contrast computation with spatial priors. We model the depth saliency map by approximating the density of depth-based contrast features using a Gaussian distribution. Similar to the depth saliency computation, the colour saliency map is computed using a Gaussian distribution based on multi-scale contrasts in superpixels by exploiting low-level cues. By assuming that colourand depth-based contrast features are conditionally independent, given the classes, a discriminative mixed-membership naive Bayes (DMNB) model is used to calculate the final saliency map from the depth saliency and colour saliency probabilities by applying Bayes’ theorem. The Gaussian distribution parameter can be estimated in the DMNB model by using a variational inferencebased expectation maximization algorithm. The experimental results on a recent eye tracking database show that the proposed model performs better than other existing models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph-based Visual Saliency Model using Background Color

Visual saliency is a cognitive psychology concept that makes some stimuli of a scene stand out relative to their neighbors and attract our attention. Computing visual saliency is a topic of recent interest. Here, we propose a graph-based method for saliency detection, which contains three stages: pre-processing, initial saliency detection and final saliency detection. The initial saliency map i...

متن کامل

Just Noticeable Difference Estimation Using Visual Saliency in Images

Due to some physiological and physical limitations in the brain and the eye, the human visual system (HVS) is unable to perceive some changes in the visual signal whose range is lower than a certain threshold so-called just-noticeable distortion (JND) threshold. Visual attention (VA) provides a mechanism for selection of particular aspects of a visual scene so as to reduce the computational loa...

متن کامل

Automatic Salient Object Detection for Panoramic Images Using Region Growing and Fixation Prediction Model

Saliency detection aims to detect the most attractive objects in images, which has been widely used as a foundation for various multimedia applications. In this paper, we propose a novel salient object detection algorithm for RGB-D images using center-dark channel prior. First, we generate an initial saliency map based on a color saliency map and a depth saliency map of a given RGB-D image. The...

متن کامل

A region covariances-based visual attention model for RGB-D images

Existing computational models of visual attention generally employ simple image features such as color, intensity or orientation to generate a saliency map which highlights the image parts that attract human attention. Interestingly, most of these models do not process any depth information and operate only on standard two-dimensional RGB images. On the other hand, depth processing through ster...

متن کامل

RGBD Salient Object Detection: A Benchmark and Algorithms

Although depth information plays an important role in the human vision system, it is not yet well-explored in existing visual saliency computational models. In this work, we first introduce a large scale RGBD image dataset to address the problem of data deficiency in current research of RGBD salient object detection. To make sure that most existing RGB saliency models can still be adequate in R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016